
Utility Scripts for the VSO Codebase

E. J. Mansky

1 Introduction

The VSO codebase at UCAR’s HAO contains a number of utility scripts that
provide additional functionality. Here we describe the utility script mission db.pl,
and the associated Moose packages and configuration files, that create and pop-
ulate MySQL databases for use by the VSO.

The Perl script mission db.pl is used to create the database schema for the
meta-data needed on a per-DataProvider and per-instrument basis. The script
also loads the meta-data into the tables. Once the meta-data is loaded into
the database, the VSO codebase reads and uses the meta-data to construct and
execute queries based upon the data in the meta-data tables.

The section ”Usage” covers in detail the command-line invocation of the
script, while the section ”Requirements” details the CPAN modules required by
the script and it’s associated supporting code. The section ”Moose Objects”
provides details on the public and private methods in the Moose objects used
by the driver script mission db.pl. The section ”Configuration Files” provides
details on the layout and contents of the 2 configuration files driving the script
mission db.pl The section ”Examples” provides details on case of the HAO
instruments CHIP, K-Cor and CoMP.

2 Usage

The usage of mission db.pl typically involves three steps, first is to create the
database if needed. Secondly, create the tables in the database that will contain
the meta-data. Finally, load the needed data into the tables.

A final, optional fourth step may also be executed, depending upon the
DBA’s preferences.

All the data needed to drive the script are in two configuration files: a schema
file and a configuration file. Both are referred to herein as ”configuration” files.

1) To create a database that will contain the meta-data used by the VSO
codebase type:

mission db.pl− mi vso− f vso schema.tmpl− p $CONFIG BASEPATH

−st config− db type mysql− m create− o database

−u DB USER− pw DB PASSWORD

The creation of the database VSO will most likely not be necessary since it
may already exist at your site. If so, the first step should be skipped.

1

2 Usage 2

2) To create the tables in the database created by the above command, type:

mission db.pl− mi vso− f vso schema.tmpl− p $CONFIG BASEPATH

−st config− db type mysql− m create− o table

−u DB USER− pw DB PASSWORD

3) To load the database tables with the required meta-data type:

mission db.pl− mi vso− f vso schema.tmpl− p $CONFIG BASEPATH

−st config− db type mysql− m load− o table

−u DB USER− pw DB PASSWORD

where DB USER and DB PASSWORD represent the DB User and Password in
the MySQL database, respectively.

The environment variable $CONFIG BASEPATH points to the directory where
the two configuration files are located. A second environment variable, $LOGPATH
points to the location where log files will be written during processing.

The final step of loading the data into the VSO tables used to store the meta-
data needs to be executed only when a stored procedure changes, which would
be a result of a DB schema change, or, with the addition of new functionality.
Generally the frequency of such schema changes is low, so the loading step in
most cases would be done only once.

4) To load the SQL commands associated with the named stored procedures
above, into their respective databases, the optional fourth step may be executed:

mission db.pl− mi acos− f acos schema.tmpl− p $CONFIG BASEPATH

−st config− db type mysql− m load− o table − sp only 1

−u DB USER− pw DB PASSWORD

for the example of the ACOS database at HAO. See §5 for details.

2.1 Full Usage Statement

The complete Usage statement of the script is:

mission db.pl− mission | − mi (Mission) −file | − f (Filename)
−path | − p (Path) −schema type | − st (Type of schema [flat | config])

−db type (Type of DB [mysql | postgres])
−mode | − m (Mode of operation [create | drop | load])

−option | − o (Option [database | table])
−sp only | − sp (load only stored procedures in non-VSO DB)

−user | − u (DB User)
−password | − pw (DB Password)

−host | − h (DB Host) –optional, may be placed in configuration file
−privs | − pv (DB Privileges) –optional, may be placed in configuration file

−help | − h 1 : This message, 0: default is no help message

3 Requirements 3

3 Requirements

The following CPAN modules are required to install and execute mission db.pl:

Moose

Config::FromHash

Tie::IxHash

Clone

DateTime

The key package is Moose since the objects used by mission db.pl are all
Moose objects. Newer installations of Perl after 5.18 should already have Moose
installed.

Another key CPAN module is Config::FromHash which most likely will need
to be installed. Config::FromHash is used so that both the configuration and
schema files can be written as arbitrary Perl hash structures and read into the
code directly as such.

4 Moose Objects

The Moose framework is used for the core Object MissionDB since it provides
several useful features over the older OO Perl framework. No prior experience
with Moose is necessary to run the script, only that Moose itself is available in
the Perl being used.

The first advantage Moose provides is automatic constructors and destruc-
tors for a given Object. Secondly, Moose provides automatic type checking of
all attributes associated with a given Object. Attributes are special keys associ-
ated with the Object itself; and, if, at the time of either Object creation or use,
depending on the setting of the Boolean variable lazy, an attribute does not
have the correct type of value, an error is thrown. Finally, Moose has a large
number of extensions, two of which: before and after, are especially helpful.
before and after names methods that fire before or after the indicated method,
respectively, thereby providing an easy technique to build dependencies among
a set of methods and attributes.

4.1 Purpose

The purpose of MissionDB is to provide a single Object that will create, drop or
load tables for a given Mission’s DB based on a schema file. The Object provides
one public method, ”execute” to do all of the given actions available. Which
particular action is executed depends on the settings of the required options at
the time the Object is created.

A second public method, ”validate”, performs a validation check of the tables
that contain file-related data to see if all the expected data was loaded or not.

The driver script, mission db.pl, creates the MissionDB object first from
the data passed in on the command-line. Then the public methods execute or

4 Moose Objects 4

validate are called from the MissionDB Object by the driver script to do the
desired actions of create or load.

4.2 Initial Usage –for Object set-up

my $missionObj = MissionDB→ new({schema type => $stype,
schema path => $spath,
schema file => $sfile,

db type => $dbtype,
mission => $mission,

mode => $mode,
option => $option,

′ db user′ => $dbuser,
′ db pw′ => $dbpw,

′ db host′ => $dbhost,
′ db privs′ => $dbprivs,
});

where the values for each key are defined locally in the caller, appropriately.

4.3 Subsequent Usage –to execute the desired action

$missionObj→ execute –for create or drop
$missionObj→ validate($data) –for validation

where $data = data to be loaded/validated. See below for details.

4.4 Attributes

schema file
The attribute schema file contains the filename of the schema file defining

the DB to be created and loaded.

schema path
The attribute schema path contains the path to the schema file defining the

DB. Currently the parent caller defines the path via a shell environment variable
CONFIG BASEPATH. Other mechanisms will of course work equally well.

schema type
The attribute schema type is a string with a value of ”config” if the schema

file is general hash in a flat file. In the future, as the need arises, other types of
schema files will be added.

schema
The attribute schema contains the parsed results of the schema file as a set

of nested, tied hashes. This attribute is the main output of the private function
get schema.

did schema

4 Moose Objects 5

The Boolean attribute did schema is set to 1 the first time the schema file
is read and parsed.

db type
The attribute db type is a string, with a value indicating the type of DB to

create. Currently only MySQL is supported. Future support for PostgreSQL is
planned.

mission
The attribute mission is a string with a value indicating the specific mission

for which a DB is being created and loaded for.

mode
The attribute mode is a string with a value of ”create”, ”drop” or ”load”

that indicates which action to take in the database.

option
The attribute option is a string with a value of ”database” or ”table” to

indicate which specific DB object to perform the action specified in mode upon

sp option
The optional Boolean attribute indicates that only the stored procedures in

the schema file are to be loaded into the specified database.

db user
The attribute db user is the User to login as into the DB.

db pw
The attribute db pw is the Password for the User one is logging into the

DB as.

db host
The attribute db host is the Host where the DB is located. Currently

the DB resides on the same machine as the Apache instance the data is being
loaded for, so the usual localhost IP address is used for the value. That will
need changing if the layout changes.

db privs
The attribute db privs is a string with a value indicating the DB privileges

to use for each action. Currently set to ”admin”.

4.5 Methods

4.5.1 Public Methods

execute
The method execute performs the desired action, given in mode, on the

target DB object in option, using the the DB schema specified in the three
variables schema file, schema path and scheme type.

The overall flow in execute is to first get the schema by calling the private
method get schema. Then a connection is made to the specified DB and the

4 Moose Objects 6

desired SQL command is constructed and executed. During the loop over the
tables a determination is made as to which tables have already been operated on
and are skipped, allowing only the tables that need the operation to be worked
on. Finally, the results of the actions taken are printed to the log file.

validate
The method validate performs a check of the actual no. of rows loaded into

the DB for the tables with file-related data and compares against the expected
no. of rows. Success or failure log messages are generated in either case, and
printed to the log file.

4.5.2 Private Methods

get schema

The method get schema reads the schema file, using the CPAN routine
Config::FromHash, and parses the results into tied hashes, using the CPAN
routine Tie::IxHash, so that the order of the table and column keys are pre-
served. Once the tied version of the schema hash is completed, it is saved for
later use by the object in the attribute schema and the corresponding Boolean
attribute did schema is updated, so that the schema is read and parsed only
once upon the call to execute, NOT at object initialization.

getDBConnection

The method getDBConnection gets the 4 DB related login variables, db user,
db pw, db host and db privs from the object and establishes a connection to

the DB by a call to DBlogin. The connection is returned.

DBlogin

The method DBlogin logs into the type of database requested, with the
specified User and Password. The connection is returned.

determineTableState

The method determineTableState executes a SHOW TABLES SQL com-
mand in the specified database and returns the list of tables returned. The
returned array, containing table names, is used to determine if a given table has
already been created, and if so, skip it.

determineTableLoadState

The method determineTableLoadState executes a SHOW TABLES SQL
command to get a current list of tables in the DB to test against. Generally,
there will be two types of tables in a given Mission DB, one set of tables dealing
with the instruments and detectors and independent of the data files of the
mission. The second set of tables store information on a per-file basis. Such
data includes filenames, file mod dates, file sizes and checksums. The two types
of tables are distinquished by the optional Boolean key per file in a given table’s
hash in the schema file. For the tables with per file = 0 (instrument-related
tables), an immediate check of the row count is done and compared against the
expected. For the tables with per file = 1 (file-related tables), a check is deferred

4 Moose Objects 7

until deferred run = 1 is passed in the Hashref $data. Once deferred run = 1 is
seen, then the file-related tables actual vs. expected row count check is done.

After the checks of the tables are done a Hashref of the Boolean status of
each check, on a per-table basis, is returned.

mapKeys

The method mapKeys maps the columns declared as keys in a given table in
the schema file into a hash, $ckeys that is ordered by the key name, table name
and sort order of the key. The reason for the particular ordering is to make the
subsequent generation of the SQL commands to create a table and multi-part
keys as easy as possible.

The hash $ckeys, and the last column in the given table, $last, are returned.

mapType

The method mapType is called from inside a map statement where it is
passed, the current table name, that table’s column schema and the output of
mapKeys –the last column name of the current table and the hash $ckeys of the

keys for that table. The return value is a sequence of strings of each column
type and lastly the Primary Key and Secondary keys (if any). The parent caller
then uses a join of the results of the map statement to construct the string that
will form the CREATE TABLE command.

getColMap

The method getColMap constructs a sequence of INSERT SQL commands
to load the data, passed in $data from method execute, into the DB for a given
table. Two key helper functions, getColValues and getColVariables are
used to construct the two pieces that go into the INSERT command. The row
count of the data loaded is returned.

getColValues

The method getColValues constructs and returns an array of placeholders,
one for each column in the given table. The parent caller then joins the array
elements together into a string for the VALUES part of the INSERT command.

getColVariables

The method getColVariables constructs and returns an array of values to
be loaded into the DB for a given table, one element per column. The returned
array is then stepped through and a bind parm is called for each value. This is
the key method in the loading process and calls the MissionLoader::$Mission

plugin getLoaderVariables to obtain the mission-specific data. Note that the
particular MissionLoader package used is not known until runtime, so a require
is used instead of use. See the perldoc for MissionLoader::EUNIS for additional
details.

logResults

The method logResults generates printf statements, using the attribute
log file for the filehandle to determine which file to print to. The overall purpose
of logResults is to encapsulate as much as possible the print statements to a
single method.

4 Moose Objects 8

4.6 Configuration Files

Two files are required to define all the variables needed to create and load the
meta-data VSO database tables. The database schema for the VSO is defined
in the hash in the file vso schema.tmpl. The meta-data to be loaded into the
VSO tables is defined in the corresponding configuration file, vso config.tmpl

4.6.1 Schema File

The schema file is a hash with required keys and optional sub-hashes that define
all the data necessary to create, drop or load a DB for given mission.

The tables, columns and stored procedures are all created in the order they
appear in the schema file by the use of the CPAN module Tie::IxHash and the
use of the arrays ordered tables, ordered columns and ordered procedures,
respectively.

Required Keys

database
–value is the name of the database to be created, dropped or loaded into.

ordered tables
–value is an array containing the same table names as in each table hash.

The tables will be created, dropped or loaded in order they appear in the array.

tables
–subhash containing keys, one for each table to be acted upon. In turn, each

table key points to a subhash that then should contain a subhash of column
names. Each column subhash then should contain keys: type, key and option-
ally key names. The key subhash has one of three possible values: primary,
secondary or both. Primary indicates the column will be the primary key of the
corresponding table. Similarily for secondary. If the column is going to both
be a primary key for the table and be part of a secondary key, with potentially
other columns, then it will also be a secondary key, which is indicated by the
value both.

For secondary keys an optional subhash key names can be used to define
the name of the secondary key and the order the column should appear in the
secondary key. In the example below col2 of table 2 will appear as the fifth key
in the secondary key sec key name.

Also required in each table subhash is a key: ordered columns. The key
ordered columns is an array containing the column names in the order to be
created, dropped or loaded in the DB. The array elements should of course
match the keys in the columns subhash.

tables => {
table 1 => {
ordered columns => [col1, col2, ..., colN],
columns => {
col1 => {

4 Moose Objects 9

type =>′ DBtype′,
},
col2 => {
type =>′ DBtype′,
key =>′ primary′,
},

. . .
colN => {
type =>′ DBtype′,
},
},
},
table 2 => {
ordered columns => [col1, col2, ..., colN],
columns => {
col1 => {
type =>′ DBtype′,
key =>′ primary′,
},
col2 => {
type =>′ DBtype′,
key =>′ secondary′,
key names => {
sec key name => {
sort order => 5,
},
},
},

. . .
colN => {
type =>′ DBtype′,
},
},
},

. . .
table N => {
ordered columns => [col1, col2, ..., colN],
columns => {
col1 => {
type =>′ DBtype′,
},
col2 => {
type =>′ DBtype′,
key =>′ primary′,
},

. . .

4 Moose Objects 10

colN => {
type =>′ DBtype′,
},
},
},
}

Optional Keys
If stored procedures are needed in the DB, then two additional keys are

needed.

ordered procedures => [stored proc1, stored proc2, ..., stored procN],
stored procedures => {
stored proc1 => {
script => qq{

SQL source code for stored procedure #1
}

stored proc2 => {
script => qq{

SQL source code for stored procedure #2
}

. . .
stored procN => {
script => qq{

SQL source code for stored procedure #N
}
}
}

4.6.2 Configuration File

The configuration file vso config.tmpl contains a hash, VSO, with the data to
be loaded into the 5 tables in the VSO database. The VSO hash is composed
of multiple keys that are used in MissionDB.pm to load data into the DB and
later validate the loaded data.

Here is a summary of the most important keys and their use in the VSO
hash:

per year Boolean variable. Set to 1 for Missions that have data on a per-year
basis. Set to 0 for VSO.

per site Boolean variable. Set to 1 for VSO. Used during validation checks of
data loading.

stored procedures Array variable, the elements of which are the names of the
stored procedures that are in the vso schema.tmpl in the sub-hash stored procedures.

DataProviders Key sub-hash containing the data to be loaded into the table
data providers.

5 Examples 11

Credentials Key sub-hash containing the data to be loaded into the table
data feed credentials.

Mapping Key sub-hash containing the data to be loaded into the table schema mapping.

SwitchoverDates Key sub-hash containing the data to be loaded into the table
instrument details.

5 Examples

To illustrate the use of mission db.pl in a specifc case, we highlight here the
usage of the meta-data needed for the HAO instruments CHIP, K-Cor and
CoMP. The HAO instruments provide a good use case for the problem of when
one group of instruments is split between two databases, each with a distinct
schema, and a second group of instruments is located in only one DB.

To properly encapsulate the problem of a given instrument’s data being dis-
tributed among multiple DBs, while other instrument’s data is not distributed,
we added a new variable, instrument group no., represented in Perl as $igroup,
with an associated column in the VSO tables, IGROUP, both of which are in-
tegers. By using an integer variable to do the mapping for multiple DBs, we
avoid enumerating lists of specific instruments in the main Perl backend code
MLSO.pm. Using an integer for the mapping also provides an easy way to add
new instruments in the future.

The number of instrument groups associated with the HAO is set by the
config key no igroups in the hash DataProviders:

VSO => {
per year => 0,
per site => 1,
completion criteria =>′ DataProviders′,
login criteria =>′ Credentials′,
instrument criteria =>′ SwitchoverDates′,
mapping criteria =>′ Mapping′,
key for id per key =>′ Sources′,
stored procedures => [read all dps, read dp credentials, read swover dates,

read mapping′, read sp details],
DataProviders => {
HAO => {
Sources => {
MLSO => {
data feed type =>′ remote′,
detail tree type =>′ INSTRUMENT′,
no igroups => 2,
metakey =>′ YYYY′,
plugin name =>′ hao instrument′,
data page available => 1,
active => 1,

5 Examples 12

},
},
},
},
},

Snippet from vso config.tmpl illustrating the key no igroups in input data
hash DataProviders. The remaining variables are used in error message gener-
ation and data validation, both of which are described in other documentation.

The instrument group no. is input as nested keys in the data hash Credentials

as follows:

Credentials => {
HAO => { # Provider
MLSO => { # Source
′ACOS′ => { # Database name
′1′ => { # instrument group no.
LOGIN =>′ vso′,
PW =>′!letmein!′,
HOST =>′ mlso.hao.ucar.edu′,
PORT =>′ 3306′,
MECHANISM =>′ DBI′,
DB TYPE =>′ mysql′,
SP NAME =>′ query acos′,
ARG LIST => [nqyear, time start, time end, instrument, nqpostfix],
SQL LIST => [SQL INTEGER, SQL DATETIME, SQL DATETIME, SQL VARCHAR, SQL VARCHAR],
},
},
′MLSO′ => {
′1′ => { # instrument group no.
LOGIN =>′ vso′,
PW =>′!letmein!′,
HOST =>′ mlso.hao.ucar.edu′,
PORT =>′ 3306′,
MECHANISM =>′ DBI′,
DB TYPE =>′ mysql′,
SP NAME =>′ query mlso′,
ARG LIST => [time start, time end, instrume, telescop, nqpostfix],
SQL LIST => [SQL DATETIME, SQL DATETIME, SQL VARCHAR, SQL VARCHAR, SQL VARCHAR],
},
′2′ => {
LOGIN =>′ vso′,
PW =>′ different one′,
HOST =>′ databases.hao.ucar.edu′,
PORT =>′ 3306′,
MECHANISM =>′ DBI′,
DB TYPE =>′ mysql′,

5 Examples 13

SP NAME =>′ query mlso′,
ARG LIST => [time start, time end, instrume, telescop, nqpostfix],
SQL LIST => [SQL DATETIME, SQL DATETIME, SQL VARCHAR, SQL VARCHAR, SQL VARCHAR],
},
},
},
},
}

where the data in the Credentials hash is loaded into the VSO table data feed credentials

which has a 4-part index: PROVIDER, SOURCE, IGROUP, DB NAME.

The VSO codebase then uses the stored procedure read dp credentails:

read dp credentials => {
script => qq{ CREATE PROCEDURE read dp credentials()

DETERMINISTIC READS SQL DATA
BEGIN

DECLARE RV INT;
SET RV = 0;
SELECT * from VSO.data feed credentials;

END;
},

},
to retrive the data in the table during startup and load it into a 4-dimensional
hash $db credentials:

$dp credentials→ {$dp row{provider}}{$dp row{source}}{$dp row{igroup}}{$dp row{db name}} = {
′LOGIN′ => $dp row{login},
′PW′ => $dp row{pw},
′HOST′ => $dp row{host},
′PORT′ => $dp row{port},
′MECHANISM′ => $dp row{mechanism},
′DB NAME′ => $dp row{db name},
′DB TYPE′ => $dp row{db type},
′SP CNAME′ => $dp row{sp cname},
′SP QNAME′ => $dp row{sp qname},

}if $sp = read dp credentials&& defined($dp row{igroup});
where the 4-dimensional key is the Perl counterpart to the 4-part DB index for
the corresponding table. The two stored procedures in SP CNAME and SP QNAME

are loaded into the database indicated by the key DB NAME. To provide a complete
self-contained set of codes and config files, the loading of the stored procedures
in the ACOS and MLSO DBs can be accomplished by executing step #4 in §2
using the provided schema files acos schema.tmpl and mlso schema.tmpl.

Similarly, each of the remaining VSO meta-data tables has a stored proce-
dure that is used to read data in from that table, and a corresponding Perl
multi-dimensional hash that stores the data in the most appropriate manner
for use in MLSO.pm. The result is a general mechanism that supports the use

5 Examples 14

of stored procedures on a per-DataProvider/per-instrument basis in the VSO
codebase so that on-the-fly hashes can be constructed that provide the names
of the DBs and stored procedures to query and call. during a given VSO search.
The resultant Perl code in MLSO.pm is thereby simplified so that no details of
specific stored procedures argument lists need be in the code explicitly, for exam-
ple. Such details now reside in the meta-data tables and the stored procedures
themselves.

Tab. 1: Mapping of Instrument to Instrument Group number

Instrument Instrument Group Number Comment
CHIP 1 Data in ACOS & MLSO

PER YEAR = 1 in ACOS only
K-Cor 2 Data only in MLSO

To support the new code that uses the stored procedures in ACOS and
MLSO databases to count and query the HAO data, 5 new methods have been
added to the backend package MLSO.pm: getSPNames, getNumFound, getSPArgs,
mapField and getRecords.

5.0.1 getSPNames

The public method getSPNames first retrieves the VSO meta-data from the
Config Object, and then constructs the array-of-hashes structure, $sp names,
that contains the DB, the stored procedure names that execute the counting
and querying for a given instrument, together with the argument and SQL type
lists for each stored procedure.

To simplify the logic of which databases are to be used for a given query,
the start and end dates of the User’s query, together with the switch-over date
of the given instrument (if defined) are all first converted to DateTime objects.
Then, depending on whether the switch-over date overlaps or not the query date
range, one, or more, databases are needed and appropriately pushed into an ar-
ray. Each element of $sp names is a hash with keys SP CNAME, SP QNAME,
DB NAME, ARG LIST and SQL LIST. The first two keys are the stored pro-
cedure names for counting and querying, respectively, the database specified in
the key DB NAME. The last two keys, ARG LIST and SQL LIST, are arrays
containing the argument list and corresponding SQL DB types of the stored
procedures.

Assumption/Limitation: It is assumed that ARG LIST and SQL LIST are
the same for both stored procedures in a given database. Generally this should
not be too much of a problem since extra variables passed into a stored procedure
can be ignored by the part of the stored procedure code that doesn’t need those
variables. If different ARG LIST and SQL LIST values are needed for each
stored procedure, due to say extensive schema changes, then additional coding
would be needed in the meta-data code & schema to handle that case.

5 Examples 15

5.0.2 getNumFound

The public method getNumFound loops over all the elements present in the struc-
ture $sp names and calls in turn the stored procedure named in SP CNAME to
count the available records in the specified database for the instrument and date
range being queried by the User. The Boolean variable $per year is defined to
be 1 for the ACOS database since it’s schema uses a per-year table structure,
otherwise it is 0. The method sums the counts returned by the stored procedure
calls and returns the results. Also returned are the row counts on a per-year
and per-igroup basis for later use.

5.0.3 getSPArgs

The public method getSPArgs takes as input the ARG LIST and SQL LIST
keys in the structure $sp names and merges the two arrays into an array of
hashes, $sp args, each element hash of which has two keys: QUERY FIELD
and SQL TYPE. The method also counts the number of elements in ARG LIST
and generates a string of ”?” placeholders duplicated the appropriate number
of times for the given stored procedure. The method then returns the string
containing the placeholders, together with the array of hashes $sp args.

5.0.4 mapField

The public method mapField does any mapping necessary for a query that
spans two databases whose individual schemas are different. The data in the
VSO meta-data table schema mapping is used to construct the field value and
SQL type to be returned. If no mapping is needed for a given query field,
that field is passed thru unchanged. The method returns the pair of variables,
$field and $sql type to the parent caller which then uses the pair in a call to
the DBI method bind param to bind the given variable value and it’s SQL type
before the final DBI method execute is called.

Note that for queries involving ACOS, the variable $year is passed in from
the caller as an attribute to the parent object ($self), which is done on-the-
fly depending on the query details. If other variables are likewise needed in
the future, they too could be passed in as attributes, or the argument list of
mapField could be generalized.

5.0.5 getRecords

The public method getRecords encapsulates the existing code that maps the
data returned from the stored procedure into query fields to be displayed within
an Apache instance, or piped to IDL, depending upon the source of the initial
request. The reason for encapsulating the code into a method is that the existing
logic of looping over the years present in the query needed generalization to use
the data in the new structure sp names since only data residing in ACOS needs
to loop over the years present. Hence code is re-used depending upon whether
the instruments being queried have data residing in ACOS, or not. The re-use

5 Examples 16

is accomplished by use of the value of $igroup, the instrument group no. Note
that the reference to the key array @records is passed to getRecords, which
pushes into the array in the parent the records found on any given call.

5.1 CHIP

The data for the CHIP instrument is split between two databases at HAO:
ACOS and MLSO. The switch-over date was 11/06/2009. Data earlier than the
switch-over date are located in the ACOS DB, while data after the switch-over
date are located only in the MLSO DB.

The schema used in the ACOS DB has the data stored in separate tables
on a per-year basis. The original VSO code in MLSO.pm had that schema hard-
coded into the SQL statements used for counting and querying the data in the
DB. The schema for the MLSO DB has all the subsequent data for CHIP after
the switch-over date in 1 table file.

To simplify MLSO.pm, the ACOS-specific logic and schema related code was
moved into the stored procedure query acos:

query acos => {
script => qq{ CREATE PROCEDURE query acos(YR INT,

DT START DATETIME,
DT END DATETIME,

ACOS INSTR VARCHAR(10),
ACOS TYPE VARCHAR(10))

DETERMINISTIC READS SQL DATA
BEGIN
IF (YR = 2000) THEN
SELECT datetime obs+0 AS timestart,

instrument AS instrument,
wave length AS wave,
file name AS fileid,
concat ws(’: ’, instrument, wave length, processing, quality) AS info

FROM tbl 2000
WHERE (1=1)
AND datetime obs <= DT START AND datetime obs >= DT END

AND type = ACOS TYPE AND instrument in (ACOS INSTR);
ELSEIF (YR = 2001) THEN
SELECT datetime obs+0 AS timestart,

instrument AS instrument,
wave length AS wave,
file name AS fileid,
concat ws(’: ’, instrument, wave length, processing, quality) AS info

FROM tbl 2001
WHERE (1=1)
AND datetime obs >= DT START AND datetime obs <= DT END

AND type = ACOS TYPE AND instrument in (ACOS INSTR);
ELSEIF (YR = 2002) THEN

5 Examples 17

. . . skipping blocks for 2002 - 2012

ELSEIF (YR = 2013) THEN
SELECT datetime obs+0 AS timestart,

instrument AS instrument,
wave length AS wave,
file name AS fileid,
concat ws(’: ’, instrument, wave length, processing, quality) AS info

FROM tbl 2013
WHERE (1=1)
AND datetime obs >= DT START AND datetime obs <= DT END

AND type = ACOS TYPE AND instrument in (ACOS INSTR);
END IF;

END;
},
},

where each year has it’s own IF/ELSEIF block of code in the stored procedure.
Once MySQL can handle dynamic table names in SQL, the stored procedure
query acos can be reduced considerably in length.

For the MLSO DB, the corresponding stored procedure query mlso is :

query mlso => {
script => qq{ CREATE PROCEDURE query mlso(

DT START DATETIME,
DT END DATETIME,

MLSO IGRP INT,
MLSO INSTR VARCHAR(10),
MLSO TELE VARCHAR(10),

MLSO FT VARCHAR(10))
DETERMINISTIC READS SQL DATA

BEGIN
DECLARE WAVELNGTH VARCHAR(10);

SET WAVELNGTH = ’10830’;
SELECT f.time obs+0 AS timestart,
MLSO INSTR AS instrument,
WAVELNGTH AS wave,
f.filename AS fileid,
concat ws(’: ’, MLSO INSTR, WAVELNGTH) AS info

FROM file AS f, filetype AS ft, instrume AS i, telescop AS t
WHERE f.time obs >= DT START AND f.time obs <= DT END
AND f.filetype = ft.ID AND ft.filetype = MLSO FT
AND f.instrume = i.ID AND i.INSTRUME = MLSO INSTR
AND f.telescop = t.ID AND t.TELESCOP in (MLSO TELE);

ELSEIF (MLSO IGRP = 2) THEN
SET WAVELNGTH = ’7200’;
SELECT f.DATE OBS+0 AS timestart,

5 Examples 18

MLSO INSTR AS instrument,
WAVELNGTH AS wave,
f.FILENAME AS fileid,
concat ws(’: ’, MLSO INSTR, WAVELNGTH) AS info

FROM kcor file AS f
WHERE f.date obs >= DT START and f.date end <= DT END;

END IF;
END;

},
},

where the local variable WAVELNGTH is set and returned since the schema in
DB MLSO in tables file and kcor file does not contain the wavelength of
the instrument.

The Perl variable $igroup, representing the instrument group no. is mapped
to the SQL variable MLSO IGRP in the stored procedure query mlso. The
data in the above table is represented in MLSO.pm in a hash $igroups with the
instrument label as the key. Hence for the case of the instrument CHIP, the IF
block of code with MLSO IGRP = 1 is executed in query mlso.

5.2 K-Cor

The instrument K-Cor has an instrument group no. = 2, so the corresponding
block of code that is executed in query mlso is when MLSO IGRP = 2.

5.3 CoMP

Under construction

